Final Report on NASA Contract NAGW-2130 A. Title: An Analysis of Solar Mesospheric Temperatures for the Upper Stratosphere and Mesosphere B. Principal Investigator: Dr. R. Todd Clancy Co-Investigator: Dr. David W. Rusch both at Laboratory for Atmospheric and Space Physics > University of Colorado Boulder, CO 80309 C. Abstract of Research Objectives: We proposed to analyze Solar Mesosphere Explorer (SME) limb profiles of Rayleigh scattered solar flux at wavelengths of 304, 313, and 443 nm to retrieve atmospheric temperature profiles over the 40-65 km altitude region. These temperatures can be combined with the previous analysis of SME 296 nm limb radiances (Clancy and Rusch, 1989) to construct a monthly average climatology of atmospheric temperatures over the 40-90 km, upper stratosphere-mesosphere region, with ~4 km vertical resolution. We proposed to investigate the detailed nature of the global temperature structure of this poorly measured region, based on these 1982-1986 SME temperatures. The average vertical structure of temperatures between the stratopause and mesopause has never been determined globally with vertical resolution sufficient to retrieve even scale-height structures. Hence, the SME temperatures provided a unique opportunity to study the detailed thermal structure of the mesosphere, in advance of Upper Atmosphere Research Satellite (UARS) measurements and the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) mission. D. Summary of Results: The SME temperature analysis was completed in early 1993, and we have completed a manuscript describing these temperatures, submitted to the Journal of Geophysical Research in October of 1993. A preprint of this manuscript is attached to this report. The key thrusts of this publication are a comparison of the SME upper stratosphere-mesosphere temperature climatology to the standard CIRA 86 temperature climatology (Fleming et al., 1990) of the same region, and the identification of a distinct, middle mesosphere (75-80 km) temperature minimum which appears at winter midlatitudes and at equinoctal low latitudes. This feature is suggested in the CIRA 86 climatology, which does not possess sufficient vertical resolution to indicate the true vertical extent and location of the temperature minimum. We also compare the SME climatology to various ground-based lidar measurements of mesospheric temperatures, which have observed and interpreted this midlatitude temperature feature at 40-44°N (e.g., Hauchecorne et al., 1987) as a mesosphere temperature inversion. We find a closer association of the winter midlatitude and equatorial temperature minima with the stratopause-mesopause semiannual oscillation (SAO). The enhanced vertical structure of SME mesospheric temperature profiles appears to lead to seasonally and latitudinally dependent biases between the CIRA 86 and SME mesospheric temperatures, which are 5-10 K in the lower mesosphere and 10-25 K in the upper mesosphere. Part of this difference may also represent temporal variability in the 2-4 year average thermal structure of the mesosphere, since the CIRA 86 climatology is based on 1973-1978 measurements and the SME climatology is based on 1982-1986 measurements. > (NASA-CR-194861) AN ANALYSIS OF SOLAR MESOSPHERIC TEMPERATURES FOR THE UPPER STRATOSPHERE AND MESOSPHERE Final Report (Colorado Univ.) 57 p N94-23626 **Unclas** G3/92 0202923 E. Conference Presentation: Global Middle Atmospheric (20-100 km) Temperatures Derived from Satellite Ultraviolet, Visible, and Near-Infrared Limb Profiles of Rayleigh Scattering, R.T. Clancy and D.W. Rusch, 5th Topical Meeting, Optical Remote Sensing of the Atmospheres, Nov. 18-21, Williamsburg, VA., 1991. F. Journal Publications: Solar Mesosphere Explorer Temperature Climatology of the Mesosphere as Compared to the CIRA Model, .T. Clancy and D.W. Rusch, Adv. Space Res., 10, 12,187-12,206, 1990. Temperature Minima in the Average Thermal Structure of the Middle Mesosphere (70-80km) from Analysis of 40-93 km SME Global Temperature Profiles, R.T. Clancy, D.W. Rusch, and M. T. Callan, J. Geophys. Res., submitted, 1993. | | |
 | |--|--|------| | | | - | # Temperature Minima in the Average Thermal Structure of the Middle Mesosphere (70-80 km) from Analysis of 40-92 km SME Global Temperature Profiles by R. Todd Clancy, David W. Rusch, and Michael T. Callan Laboratory for Atmospheric and Space Physics University of Colorado Boulder, CO 80309 Submitted to JGR Atmospheres December, 1993 #### **Abstract** Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The analysis of additional SME wavelength radiances at 304, 313, and 442 nm provides for extension of the original SME 60-90 km temperature climatology (Clancy and Rusch, 1989a) to a much expanded altitude coverage of 40-92 km. The SME temperatures represent fixed local time observations at 2-3 pm, with partial zonal coverage of 3-5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the CIRA 86 climatology as well as individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures in the 55-65 km altitude region and 10-20 K warmer SME temperatures at altitudes above 80 km. Although much of this disagreement probably stems from the poor vertical resolution of the CIRA 86 model and the limited local time and longitudinal coverage of the SME temperatures, some portion of the differences may reflect 5-10 year temporal variations in mesospheric temperatures. The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric "temperature inversions" at wintertime midlatitudes, which have been observed by ground-based lidar (Hauchecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations. The winter midlatitude "temperature inversion" is evident in both winter hemispheres and appears more distinctly as a low altitude (75 km) temperature minimum at southern midlatitudes. Furthermore, the SME temperatures indicate the related presence of low latitude temperature minima at 80 km altitude during the equinoxes. Both the low latitude semiannual minima and the midlatitude annual minima in middle mesospheric temperatures appear to result from the strong SAO in mesospheric temperatures. #### Introduction Global observations of the upper stratospheric and mesospheric temperatures recently have been obtained from several Upper Atmospheric Research Satellite (UARS) experiments and are planned with the upcoming Thermospheric Ionospheric Mesospheric Energetics and Dynamics (TIMED) mission. As both a reference and a baseline for long-term and interannual variations in the thermal structure of the upper middle atmosphere, we present a composite global climatology of Solar Mesosphere Explorer (SME) atmospheric temperatures in the 40-92 km altitude region. The SME temperatures are derived from Rayleigh limb scattering profiles as observed between 1982 and 1986. This new SME climatology extends the altitude range of the previously published SME upper mesospheric temperatures (Clancy and Rusch, 1989a) through the entire mesosphere and upper stratosphere, based on analysis of longer wavelength ultraviolet (304, 313 nm) and visible (442 nm) limb scattering observations from SME. Global definitions of mesospheric temperatures prior to the SME observations have been based on the accumulated statistics of rocket measurements obtained over an extended period of time (CIRA 1972) or global nadir soundings within the 15 micron CO₂ band (the basis for the Middle Atmospheric Program, or MAP, climatology, Barnett and Corney, 1985). The CIRA 1972 climatology suffered from the restricted global coverage and quantity of the rocket observations. The MAP climatology is affected by the limited vertical resolution (12-20 km) of nadir infrared sounding. The new CIRA 1986 climatology (Fleming et al., 1990) incorporates the MAP model up to an altitude of 80 km. and the MSIS 83 thermospheric model for altitudes between 86 and 120 km (Hedin, 1983). We employ this model as a standard of comparison for the SME temperatures over the 40-92 km altitude range. The SME temperatures exhibit the advantages of full seasonal, 40°S-40°N latitudinal coverage (and up to 75°S-75°N for a reduced range of seasons) over an extended period of time (4-5 years), and relatively high vertical resolution (4 km) from a fixed local time (2-3 pm) of observation. The enhanced altitude range of the new SME temperatures provides unique seasonal coverage of the stratopause and mesopause regions with sub-scale height vertical resolution. We indicate aspects of these SME temperatures which suggest that distinct temperature minima in the average mesosphere profile descend to altitudes below 85 km for certain seasons and latitudes. These minima include the temperature inversion feature identified at 40-45°N during winter (Schmidlin et al., 1976; Hauchecome et al., 1987; Meriwether et al., 1993), as well as its related behavior at winter southern midlatitudes (Clancy and Rusch, 1989a), and semiannually varying features at equatorial latitudes. Where comparisons are possible, we indicate agreements and disagreements between the SME temperature climatology and the CIRA 86 climatology, monthly averaged rocket measurements over a limited number of sites, and lidar sites. Of particular interest are the latitudes and seasons during which these middle mesospheric
temperature minima appear. #### **SME Observations** The SME limb profiles of Rayleigh scattered solar flux at ultraviolet and visible wavelengths have been described by Rusch et al. (1984) and Mount et al. (1984), respectively. The inversions of these limb profiles to volume scattering for studies of atmospheric temperatures and aerosol scattering are described in detail in Clancy and Rusch (1989a) and Clancy (1985). The essential aspects of the SME limb scattering profiles are provided in figure 1, which presents SME limb profiles at wavelengths of 296, 304, 313, and 442 nm. The exponentially increasing portions of the limb radiance profiles correspond to Rayleigh scattering from the exponentially increasing density of the molecular atmosphere coupled with the limb geometry of the observations. The ultraviolet limb profiles exhibit radiance maxima at altitudes of 40-60 km due to wavelength-dependent ozone absorption in the Hartley band (Rusch et al., 1984). The 442 nm limb profile reaches a maximum below 30 km as the slant path molecular and aerosol scattering extinction opacities approach unity (Clancy, 1986). Both the visible and ultraviolet limb radiances are inverted to yield volume radiance profiles, based on the known limb geometry, the instrumental field-of-view, and a least-squares matrix inversion algorithm (see Clancy and Rusch, 1989a). For the altitude portions of these profiles over which the limb extinction (ozone absorption or molecular scattering) opacity is less than a few percent it is possible to derive atmospheric temperatures with the assumption of hydrostatic equilibrium, the ideal gas law, and the absence of aerosol scattering. During the solstice seasons, the SME temperatures are restricted to <55° latitudes by the absence of sunlight over winter high latitudes, and by the presence of polar mesospheric clouds (e.g., Thomas, 1984) over summer high latitudes. The contribution of aerosol scattering in the lower stratosphere during the SME period of observations is dominated by the El Chichon eruption (e.g., Thomas et al., 1983). As shown in Clancy (1986), the SME 442 nm limb measurements demonstrate the penetration of significant El Chichon aerosol scattering to altitudes as high as 40 km approximately 6 months after the eruption. This in fact determines the lower limit for the derivation of SME temperatures presented in the current work. The upper altitude limit for the SME temperature analysis is determined by the signal-to-noise ratios of the SME limb radiance profiles, which also constrain the temporal resolution of the derived temperatures. The SME limb radiances are summed into monthly averages in order to achieve sufficiently high signal-to-noise ratios (>100) over the entire altitude range of analysis. Although daily temperature profiles have been calculated over reduced altitude ranges, the limited longitudinal coverage of the SME observations is better suited to derivation of monthly average temperatures. Upper altitude limits for the 296, 304, 313, and 442 nm radiance derivations of temperature are 93, 86, 86, and 54 km respectively. The lower altitude limits for the 296, 304, and 313 nm radiance determinations of temperature are 66, 58, and 54 km respectively, as set by a maximum ozone extinction opacity of .02 in the limb viewing geometry. The 1982-1986 period of SME limb observations encompasses daily limb measurements at 296 and 442 nm for 3-5 widely separated longitudes. Figure 2a presents the SME longitudinal coverage between 1982 and 1986 at these wavelengths. The 304 and 313 nm limb observations were obtained from 1983-1986, and are limited to longitudes in the western hemisphere (figure 2b). Although the monthly averaged aspect of the SME temperatures dampens much of the zonal variability introduced by the incomplete zonal coverage of SME, there remain potential sampling biases which we consider in the temperature comparisons presented below. Measurement uncertainties in the SME temperatures are detailed in Clancy and Rusch (1989a). They are dominated by reduced signal-to-noise ratios at altitudes above 80 km altitude, which lead to ± 10K errors (1 σ) for monthly average temperatures at 90 km altitude. At altitudes below 80 km the primary error sources are profile inversion errors (± 2K), altitude uncertainties (± 2K), and the effects of ozone absorption at the lowermost altitudes of inversion. This last term led to underestimations of ~5 K in the SME 296 nm temperatures presented in Clancy and Rusch (1989a) for altitudes near 60 km. In this current analysis, we further restrict the lower altitude range of temperature retrieval for each wavelength channel to remove the effects of ozone absorption on the temperature derivations (as indicated above). # **SME-CIRA 86 Comparisons** We employ the CIRA 86 climatological model of middle atmospheric temperatures as the basis of comparison for our presentation of the SME temperatures. The CIRA 86 monthly average temperature profiles in the 20-80 km altitude range are a synthesis of nadir IR (CO₂) sounding observations obtained by the Nimbus 7 Selective Chopper Radiometer (SCR, Ellis et al., 1973) experiment in 1973-1974 and the Nimbus 6 Pressure Modulated Radiometer (PMR, Curtis et al., 1974) experiment in 1975-1978. Both sets of observations obtained global (80°S-80°N, full zonal) measurements over these time periods. The SCR data are used to define the CIRA 86 climatology below 40-50 km, the PMR data define the CIRA 86 climatology between 50 and 80 km altitude. At altitudes above 86 km, the CIRA 86 climatology is derived from the thermospheric empirical model MSIS 83, which includes a variety of spacecraft observations of the thermosphere versus solar activity. However, the MSIS model over the 86-100 km region is primarily an extrapolation from the 120 km altitude level (Hedin, 1983). The SCR and PMR temperature retrievals provide vertical resolutions which vary from 12 km in the lower stratosphere to 20 km in the upper mesosphere (Barnett and Corney, 1985). The CIRA 86 climatology has become a fairly standard representation of the background middle atmosphere for both data analysis of observations lacking contemporaneous temperature measurements and for modelling of photochemistry (e.g., Clancy et al., 1993), particularly for the mesosphere where the long-term National Meteorological Center (NMC) temperatures are not available. Hence, we stress the distinctions between the SME and CIRA 86 mesospheric temperatures as an indication of the existing uncertainties in the background temperature field of the mesosphere. As the following SME-CIRA comparisons indicate, there exist large differences (5-20 K) in the inferred background temperatures of the mesosphere which exhibit distinctive temporal, vertical, and latitudinal structures. The key issues regarding the SME-CIRA temperature comparisons are the limited vertical resolution of the CIRA mesospheric temperatures, the restricted longitudinal and local time coverage of the SME mesospheric temperatures, and potential temporal (timescale>4-5 years) changes in the temperature field of the mesosphere. In figures 3-7 we present profiles of the composite SME temperatures (dashed lines) and CIRA 86 (solid lines) temperatures for latitudes of 40°N, 15°N, 0°, 15°S, and 40°S for the months of January, April, July, and October. The SME temperatures indicate both the individual wavelength measurements (as various symbols) and the interpolated composite SME temperature profile formed over the full 40-92 km altitude range of the SME temperature measurements. The SME composite profiles of temperature are computed as a least-squares, sliding cubic spline fit through the individual wavelength measurements. The variations in SME temperatures present among multiple wavelength measurements of temperature at a given altitude are partly due to the 2-5 K uncertainties in the SME temperature retrieval at altitudes below 86 km. It is also possible that the different longitudinal coverages represented among the different wavelength channels (see figure 2) lead to biases in the monthly average temperatures, even for the 3-4 year averages represented by these SME temperatures. The SME 304 and 442 nm temperature measurements at 55 km altitude, in particular, display a consistent offset with respect to one another of ~5 K. This bias is probably due to the fact that the 55 km altitude corresponds to the lower and upper boundaries of temperature retrieval for the 304 and 442 nm channels, respectively. The differences between the SME and CIRA 86 mesospheric temperatures can be roughly characterized by three cases. The first case regards the strong semiannual oscillation (SAO) of equatorial mesopause temperatures which is evident in both the SME and CIRA 86 temperatures (figures 4-6). The SME definition of the SAO in the mesosphere, based on the earlier analysis of 296 nm limb radiances (Clancy and Rusch, 1989a), exhibits an increasing amplitude for the mesosphere SAO up to 90 km altitude at equatorial latitudes (Garcia and Clancy, 1991). The CIRA 86 climatology includes very little mesosphere SAO amplitude above 85 km altitude where the MSIS 83 model is applied, but significant amplitudes below 85 km where the MAP IR-based model is employed. Furthermore, the mesosphere SAO vertical wavelength (~20 km) is not well sampled by the 20 km vertical resolution of the MAP temperatures in this region. The comparisons between the equatorial SME and CIRA 86 temperatures of figures 4-6 suggest that the limited vertical resolution of the CIRA 86 measurements at altitudes above 60 km do not adequately resolve the strong SAO variations and may lead to complex biases in the vertical temperature profiles for this region. Alternatively, the constant local time (2 pm) of the SME climatology may lead to biases from strong tidal variations in temperatures near the equator. Based on current tidal models, the phases of the
diurnal tides are not predicted to vary seasonally and the amplitude of the diurnal tide is predicted to decrease to near zero at 15° north and south of the equator (Forbes and Gillette, 1982), suggesting that tidal variations in mesospheric temperatures are not the primary cause of the large SAO signature in the 15°S-15°N SME temperature climatology above 80 km altitude. However, few observations are available to support the tidal models in such detail, and tides undoubtably influence comparisons between the SME and CIRA 86 climatologies. In any case, the CIRA 86 and SME climatologies exhibit disagreements as large as 20 K near the equatorial mesopause around the equinoxes (e.g., figures 5b and 5d). The mesospheric SAO signature in the SME temperatures effectively leads to a deep temperature minimum, near the equinoxes, at an altitude of ~80 km. The CIRA 86 climatology present weaker temperature inflections near 70 km for the same seasons. Similarly, the SME mesospheric temperatures present a striking wintertime minimum near 75 km at midlatitudes (figures 3c and 7a), which is far less distinct, although suggested, in the CIRA 86 temperatures. This feature was originally described as a wintertime temperature inversion of variable intensity within the mesosphere, based upon rocket observations (Schmidlin, 1976) and groundbased lidar observations over Haute Province (Hauchecorne et al., 1987). It has also been observed by ground based lidar over Wright Patterson AFB in Ohio (Meriwether et al., 1993), as well as in the earlier SME temperature analysis (Clancy and Rusch, 1989a). The SME climatology indicates that this feature exists in the southern as well as northern midlatitude winter, that it characterizes the monthly average temperature profile, and that it appears more distinctly as a mesospheric temperature minimum in the southern hemisphere (c.f. figures 3c and 7a). In fact, this feature appears related to the equatorial temperature minimum in its behavior, within both the CIRA 86 and SME climatologies. However, the midlatitude temperature minima exhibit more annual character, and descend to a lower altitude (~75 km), as we describe in more detail below. The differences between the SME and CIRA 86 characterizations of these midlatitude minima are also quite similar to those exhibited for the SAO temperature minima near 80 km (figures 4-6 b and d). The third area of disagreement between the SME and CIRA 86 climatologies regards the generally warmer lower mesosphere indicated by the SME versus the CIRA temperatures. SME temperatures are typically 10K warmer than CIRA 86 temperatures over the 55-65 km altitude region, as can be seen from figures 4-8. This distinction was not apparent in the earlier SME temperature analysis (Clancy and Rusch, 1989a), which did not provide temperature retrieval below 58.5 km. Furthermore, the 58.5-62 km SME temperatures from the 296 nm limb radiances were biased low by incomplete correction for ozone absorption. The 304 and 313 nm temperature derivations for the lower mesosphere are not sensitive to ozone absorption due to the much re- duced ozone absorption cross sections at these wavelengths. Consequently, the new composite SME temperature profiles presented here provide the first reliable comparison of CIRA and SME temperatures in the lower mesosphere. The distinctions between lower mesospheric temperatures from the SME and CIRA 86 climatologies may partly arise from the differences at higher altitudes, where the vertical location of the middle mesosphere temperature minimum is offset between the two climatologies. Comparisons with rocket and lidar measurements of temperatures are provided below to assess the relative accuracies of the SME and CIRA 86 climatologies in this region. Far fewer comparisons are available at altitudes above 80 km. A portion of the disagreement between these SME and CIRA 86 temperatures must be due to vertical resolution effects in the CIRA temperatures between the cold mesopause and the warm stratopause. This effect becomes even more important if the identification of a distinct, seasonally and latitudinally dependent temperature minimum in the middle mesosphere is proved correct. The vertical resolution of the CIRA measurements is not sufficient to resolve the stratopause , without prior constraints on the stratopause altitude and shape, and CIRA 86 is very model dependent in the mesopause region. On the other hand, the incomplete zonal coverage of the SME measurements may contribute to differences in the lower mesospheric temperatures and the stratopause altitude. SME temperatures also do not extend above 92 km altitude and were obtained for a fixed local time, such that complex double mesopause structures at higher altitudes (e.g., She et al., 1993; Bills and Gardner, 1993) and the effects of tides cannot be separately identified. Furthermore, the different time periods of the observations reflected in the SME and CIRA 86 temperatures may lead to real differences, given that temperature trends of >5K over 3-5 year periods are observed for the upper stratosphere (Clancy and Rusch, 1989b) and the mesosphere (Clancy and Rusch, 1989a; Chanin et al., 1987). In the following sections, we present comparisons of the SME temperatures to local rocket and lidar profiles of 40-90 km temperatures, followed by a comparison of the middle mesosphere temperature minima regions from the SME and CIRA 86 temperature data sets. ## **SME-Rocket Comparisons** A fairly large set of datasonde temperature measurements were obtained during 1982, which are appropriate for comparison to SME lower mesospheric temperatures at 4 separate locations. These sites (Pt. Mugu, CA; Wallops Island, VA; Ascension Island; and Barking Sands, HI) range from 10°S to 37°N in latitude and include measurements for the months of January and March of 1982. The averaged datasonde temperatures for each location, which incorporate 8-29 separate flights per monthly average, are presented in figures 8 a-f as asterisk symbols with error bars. The average local times of the rocket observations are 2-7 pm, as indicated on each figure. The error bars presented for each rocketsonde profile present ± 1 σ in the observed distributions of temperatures at each site. SME and CIRA 86 temperature profiles are included for comparison as dashed and solid lines, respectively. In general, the datasonde temperatures in the 55-65 km altiqude range are warmer by ~10K than the CIRA 86 temperatures, and in much better agreement with the SME temperatures in this same region. Specifically, the average difference in the rocket versus SME temperatures is less than 5K between altitudes of 48 and 72 km. The average of the six rocket temperatures is 13K warmer than CIRA 86 at 60 km. There have been recent indications of bias errors in datasonde temperatures above 60 km altitude. Based on comparisons between falling sphere and datasonde temperature measurements, Schmidlin et al. (1991) suggest that datasonde temperature measurements at ~65 km may be biased high by ~5 K, with significantly increasing biases above this altitude. At and below 60 km altitude, the falling sphere and datasonde temperatures exhibited agreement to better than 3 K. Hence, the agreement between SME and the datasonde profiles and their disagreement with CIRA 86 near 60 km is not significantly impacted by the reported errors in datasonde mesospheric temperature measurements. At altitudes above 70 km, comparisons of the datasonde temperatures with the CIRA 86 and SME temperatures are subject to potentially large bias errors in the datasonde measurements. Nevertheless, it is of interest to note that the March datasonde profiles at the low latitude stations suggest the presence of local temperature minima near 80 km altitude. Specifically, low-altitude temperature minima present in the March 10°S and 20°N SME profiles of figures 8b and 8c are suggested in the accompanying Ascension Island and Barking Sands profiles. Furthermore, the January Pt. Mugu profile of figure 8d suggests a temperature minimum near 75 km which compares reasonably well with the 74 km temperature minimum presented in the comparison SME temperature profile. #### **SME-Lidar Comparisons** In figures 9 a-f, we present comparisons of the 45°N latitude SME temperature climatology (dashed lines) to the Haute-Provence, France (44°N, 6°E) lidar temperature observations, for every other month. In each case, we include the French monthly averaged profiles for the 1981-1984 period (dotted lines, from Chanin et al., 1985) and for the 1981-1987 period (solid lines, from Chanin et al., 1990). For several months, notably July and November, there exist significant differences between these two period averages. The lidar temperatures are nighttime measurements, and incorporate roughly 30-50 observations per monthly average for the 1981-1987 averages, and roughly half that for the 1981-1984 averages. The upper altitude limit of these French lidar measurements is 80 km, where the predicted (e.g., Forbes and Gillette, 1982) solar tidal variations at 80 km, 40° latitude are ~5 K in amplitude. Hence, the 2 pm SME observations and the nighttime lidar observations could represent atmospheric temperatures that are intrinsically distinct by 2-5 K at altitudes between 70 and 80 km due to diurnal temperature variations. Such differences are within the uncertainties of our comparisons, given the different longitudes sampled by the SME and lidar comparisons (e.g., see Clancy and Rusch, 1989a). However, the effects of solar tidal variations in mesospheric temperatures become a more significant issue at higher altitudes and equatorial latitudes, as we discuss below. The lidar (1981-1984)-SME comparisons of figure 9 indicate agreement of better than 5 K except for January, May at 60 km and March at 45 km, where 5-10 K disagreements are found. The 1981-1987 lidar temperatures are 4-7 K colder than the SME
temperatures at 55-65 km altitude for the yearly average. The lidar temperatures are typically 6-7 K warmer than the CIRA 86 temperatures at 55-65 km over the 1981-1984 period, and 3-4 K warmer for the full 1981-1987 period, indicating cooling in this region between 1981 and 1987. Agreement above and below the 55-65 km region is typically within 3 K among the lidar, SME, and CIRA 86 temperatures. More recent lidar observations by Bills and Gardner (1993) allow a comparison with SME temperatures above 80 km, at 40°N latitude (Urbana, Illinois- 88°W). In figures 10 a and b, we present the seasonal (January-June) variation of atmospheric temperatures at 85 and 90 km, respectively, for the SME (crosses), Urbana lidar (solid line), and CIRA 86 (asterisks) data sets (see also figures 7a and 7b). As with the French lidar observations, the Urbana data are nighttime measurements. The SME and Urbana lidar temperatures exhibit very similar seasonal trends in 85-90 km atmospheric temperatures over the January-June period, whereas the CIRA 86 climatology presents considerably smaller seasonal variation, particularly at 90 km altitude. The CIRA 86 temperatures agree better in an absolute sense with the Urbana lidar measurements at 85 km, but exhibit a 5-15 K cooler temperatures at 90 km. The SME temperatures are 10 K warmer than the Urbana temperatures at 85 and 90 km, for the entire January-June period. The relatively constant 10 K difference between the SME and Urbana lidar temperatures at 85-90 km may be partly explained by solar tidal variations as well as the distinct longitudinal and temporal coverages and measurement uncertainties for the two data sets. The Forbes and Gillette (1982) tidal model predicts diurnal and semidiurnal amplitudes of 4-6 K at 87 km, 40° latitude, with a constant phase (versus season), except for the semidiurnal tide during winter solstice. Atmospheric temperatures at 85-90 km for the local time of the SME measurements would be ~5-10 K warmer than for the nighttime period corresponding to the lidar observations, based on the Forbes and Gillette model. Gille et al. (1991) derived tidal temperature variations at 44°N with the Haute Provence lidar up to 80 km altitude, which exhibit distinctions from the Forbes and Gillette model, but still suggest that the local time of the SME measurements would lead to ~5 K warmer temperatures near 80 km than would be observed at nighttime. The CIRA 86 model incorporates a diurnal average calculation from the MSIS 83 model, which characterizes CIRA temperatures above 80 km. The Urbana temperatures also indicate a relatively low altitude (86 km) for the mesopause in June, which is in agreement with the SME temperature profile for June, 40°N. Our final lidar comparison is with the high latitude (69°N) Andenes, Norway site for which Lubken and von Zahn (1991) have combined both lidar and in situ measurements to obtain monthly mean temperature profiles for nine months of the year. Comparisons with SME temperature profiles can be obtained only for the months of October and March at 70°N, and August at 65°N due to the presence of noctilucent clouds around summer solstice and polar nighttime conditions around the winter solstice. We present comparisons between the Norway (heavy dashdotted lines), the CIRA 86 (solid lines), and the SME temperature profiles (symbols and dashed lines) for these three cases in figures 11 a-c. Qualifications regarding the different local times among these data sets apply as described above, although tidal variations are presumed to be smaller at this higher latitude. # Middle Mesosphere Temperature Minima In order to investigate potential processes that may be responsible for the middle mesosphere temperature minima, we plot the annual variations in the SME (heavy lines) and CIRA 86 (light lines) temperatures at 75 (solid) and 85 (dashed) km altitudes. Figure 12a presents these temperatures for the latitude range 5°S-5°N, and figure 12b presents the latitude range 30°S-40°S. In these plots, the middle mesospheric temperature minima are characterized as periods when the 75 km temperature is colder than the 85 km temperature. In figure 12a (equatorial latitudes), the months of April and October are shown to be periods when temperature minima are observed at altitudes near 80 km. The development of the minima reflects the strong semiannual variations in both the 75 and 85 km temperatures, and the fact that the semiannual variations at these two altitudes are completely out-of-phase. Hence the equatorial middle mesosphere temperature minima appear to be a consequence of the strong semiannual oscillation within the low-latitude mesosphere [see Garcia and Clancy (1990) for the discussion of the mesosphere SAO; and Clancy and Rusch (1990) for a spectral analysis of the annual and semiannual variations in the 60-90 km SME and CIRA 86 temperatures]. Although the signal-to-noise ratios of daily average temperatures computed from SME limb radiances are poor, we have computed such temperatures (not shown) to determine whether the temperature minima in the middle mesosphere are influenced by extreme temperatures within an anomalous event, such as reported by Meriwether et al. (1993). We find that the annual variations presented in figures 12a and 12b are representative of the daily temperatures, rather than singular conditions such as stratospheric warmings. One other interesting aspect of the SAO variations in figures 12a and b is the noticeably stronger SAO variation for the second (October) versus the first (April) equinoctial season. This behavior is also reflected in the lower altitude of the middle mesosphere minimum from October versus the April temperature profiles presented in figures 4-6. The seasonal asymmetry of the stratopause SAO has been noted by Delisi and Dunkerton (1988), and is attributed to northern hemisphere planetary wave activity during the winter. However, they derive larger SAO wind amplitudes for the first equinoctial season (April). In fact, the SME temperatures also exhibit a larger SAO temperature amplitude for April at lower altitudes (60-70 km), as indicated in Garcia and Clancy (1990). Strong diurnal tides, which are predicted at altitudes above 80 km near the equator, must also impact the interpretation of figure 12a to some level, particularly if they prove to vary strongly with season. However, the basic character of the SME temperatures presented for latitudes 5°S-5°N in figure 12a remain essentially the same out to 20°S and N latitudes [e.g., figures 4 and 6, see also Clancy and Rusch (1990)]. In contrast, the diurnal tide is predicted to decrease to zero near 18°NS [e.g., Forbes and Gillette (1982)]. The CIRA 86 temperatures also exhibit semiannual variations for 5°S-5°N, but do not indicate a significant change in the SAO phase between 75 and 85 km altitude, and exhibit very small SAO amplitudes above 80 km altitude. This is partly because the upper mesosphere is sampled with ~20 km vertical resolution by the IR MAP measurements which form the CIRA climatology below 80 km altitude. Furthermore, the CIRA temperatures are based on a smoothed fit between the MAP temperatures and the MSIS 83 empirical model at altitudes above 80 km. Analysis of equatorial temperatures from 1964-1968 rocketsonde observations (Cole and Kantor, 1975) indicates roughly half the SAO temperature amplitudes determined from SME measurements above 80 km altitude, which is still 2-10 times greater than the SAO in the CIRA 86 model at these altitudes (Garcia and Clancy, 1990). The midlatitude temperature minima are primarily an annual, wintertime phenomenon, and occur at lower altitudes (~75 km) than the corresponding low latitude minima. Nevertheless, semiannual temperature variations appear to play an important role in the formation of the midlatitude temperature minimum. Near 70 km altitude the amplitude of the annual temperature variation is at a minimum [Clancy and Rusch, 1990], such that the SAO variation dominates the observed temperature variations. This altitude region reflects the transition between the opposite sphases of the annual temperature variations within the stratosphere and mesosphere. Both the SME and CIRA 86 temperatures at 75 km (figure 12b) demonstrate the SAO character of midlatitude temperatures in this region. At 85 km altitude both climatologies indicate a strong annual variation in temperatures. The SME temperatures still exhibit significant SAO amplitudes at 85 km, whereas the CIRA 86 temperatures do not. The primary reason that SME temperatures present a midlatitude, wintertime (July in figure 12b) temperature minimum at 75 km while the CIRA 86 temperatures do not, follows from the 15 K average difference between the SME and CIRA 86 temperatures at 85 km. The wintertime temperature minimum in the SME climatology appears to be related to the mesospheric SAO variation, similar to the origin of the equatorial temperature minima. However, at midlatitudes the strong annual variations above 80 km lead to an overall annual, winter character and a lower altitude for the middle mesosphere temperature minimum. The identification of temperature minima in the climatological structure of the middle mesosphere from the new SME temperatures is made possible by the unique vertical extent and resolution of these measurements. That these temperature minima have not been previously identified may stem from the incompleteness of previous temperature measurements in this region. Rocket observations are not extensive enough in temporal or global coverage; lidar observations are similarly restricted in coverage and existing systems have only recently provided complete vertical sounding over the key 60-90 km altitude range; and the satellite IR data sets (such as incorporated in CIRA 86) are limited by coarse vertical resolution and an upper altitude limit of ~80 km. Even so, there are indications of such temperature minima structure
in the CIRA 86 climatology. Furthermore, the amplitudes of the middle mesosphere temperature minima may vary interannually and over solar-cycle or longer timescales. Mesospheric temperature trends from the earlier 60-90 km SME temperatures between 1982 and 1986 indicated distinct latitudinal and vertical dependences which could alter the intensity of these temperature minima over 5 year timescales (Clancy and Rusch, 1989a). Eleven year trends from the Haute-Provence lidar temperatures also suggest the existence of vertically dependent trends of 1-2 K/yr over 5-10 year timescales (Chanin et al., 1987). Due to the paucity of global measurements in the mesosphere, we cannot be sure of the extent to which differences in temperature characterizations of the mesosphere are due to measurement biases among the techniques or true temporal variability. The mesosphere is predicted to be the most sensitive region to solar cycle as well as long-term variability. Even its annual and semiannual variations are large relative to the stratosphere, and the phase of the annual variation changes by a full 180° between altitudes of 60 and 70 km. #### **Conclusions** We present an expanded altitude range (40-92 km) for the SME temperature climatology which encompasses the upper stratosphere-mesosphere region (see appendix A). This climatology is compared to the CIRA 86 climatology as well as individual rocket and lidar temperature profiles. Three areas of significant disagreement with the CIRA 86 climatology are a much stronger mesosphere SAO signature in the SME temperatures, particularly above 80 km; 10-20 K warmer temperatures at 80-93 km in the SME versus the CIRA 86 climatology; and 10 K warmer temperatures at 60 km in the SME versus the CIRA 86 climatology. We argue that many of these differences may result from the poor (20 km) vertical resolution of the IR sounding and MSIS 83 modelling, which form the basis of the CIRA 86 temperatures above 50 km altitude. However, the fixed local time between the SME measurements (2-3 pm) may also lead to significant biases at altitudes above 80 km, particularly at equatorial latitudes. Furthermore, there may exist substantial temporal variations in mesospheric temperatures over 5-10 year timescales which impact the comparison of the CIRA 86 climatology (based on 1973-1978 observations) and the SME climatology (based on 1982-1986 observations). The SME temperatures indicate the presence of middle mesosphere minima in the average climatological structure of mesospheric temperatures, which form semiannually at 80 km altitude at low latitudes, and form annually at 75 km altitude at midlatitudes. The low latitude minima appear at the equinoxes. The midlatitude features are most marked during the winter, and are equivalent to the wintertime temperature inversions reported by Schmidlin (1976), Hauchecorne et al. (1987), Clancy and Rusch (1989a), and Meriwether et al. (1993). The global SME temperatures suggest that both the equatorial and midlatitude temperature minima are driven by the strong SAO behavior of mesospheric temperatures. #### References - Barnett, J. and M. Corney, Middle atmosphere reference model derived from satellite data, in *Handbook for MAP*, Vol. 16, Edited by K. Labitzke, J. J. Barnett, and B. Edwards, pp. 47-137, University of Illinois, Urbana, 1985. - Bills, R. E. and C. S. Gardner, Lidar observations of the mesopause region temperature structure at Urbana, J. Geophys. Res., 98, 1011-1021, 1993. - Chanin, M. L., A. Hauchecorne, and N. Smires, Contribution to the new reference atmosphere from ground-based lidar, in *Handbook for MAP*, Vol. 16, Edited by K. Labitzke, J. J. Barnett, and B. Edwards, pp. 47-137, University of Illinois, Urbana, 1985. - Chanin, M. L., N. Smires, and A. Hauchecorne, Long-term variation of the middle atmosphere at mid-latitude: Dynamical and radiative causes, <u>J. Geophys. Res.</u>, 92, 10933-10941, 1987. - Chanin, M. L., A. Hauchecorne, and N. Smires, Contribution to the new reference atmosphere from ground-based lidar, Adv. Space Res., 10, 211-216, 1990. - Clancy, R. T., El Chichon and "mystery cloud" aerosols between 30 and 55 km: Global observations from the SME visible spectrometer, <u>Geophys. Res. Lett.</u>, 13, 937-940, 1986. - Clancy, R. T., and D. W. Rusch, Climatology and trends of mesospheric (58-90 km) temperatures based upon 1982-1986 SME limb scattering profiles, <u>J. Geophys. Res.</u>, 94, 3377-3393, 1989a. - Clancy, R. T. and D. W. Rusch, The relationship between 1982-1986 trends in upper stratospheric ozone and temperatures, in <u>Ozone in the Atmosphere</u>, R. D. Bojkov and P. Fabian, eds., A. Deepak, Hampton, VA, 822 p., 1989b. - Clancy, R. T., and D. W. Rusch, Solar Mesosphere Explorer temperature climatology of the mesosphere as compared to the CIRA model, <u>Adv. Space Res.</u>, 10, 187-206, 1990. - Clancy, R. T., B. J. Sandor, D. W. Rusch, and D. O. Muhleman, Microwave observations and modelling of O₃, H₂O, and HO₂ in the mesosphere, accepted for publication in J. <u>Geophys.</u> Res., 1993. - Cole, A.E. and A.J. Kantor, Tropical atmospheres, 0 to 90 km, Project 8624, AFCRL-TR-75-0527, Aeronomy Laboratory, Air Force Cambridge Research Laboratories, Hanscom, 1975. - Curtis, P. D., J. T. Houghton, G. D. Peskett, and C. D. Rodgers, The pressure modulator radiometer for Nimbus F, <u>Proc. Roy. Soc. London</u>, <u>A337</u>, 135-150, 1974. - Delisi, D.P. and T.J. Dunkerton,m Seasonal variation of the semiannual oscillation, <u>J. Atmos. Sci.</u>, <u>45</u>, 2772-2787, 1988. - Ellis, P., G. Holah, J. T. Houghton, T. S. Jones, G. Peckham, G. D. Peskett, D. R. en Pick, C. D. Rodgers, K. H. Roscoe, R. Sandwell, S. D. Smith, and E. J. Williamson, The selective chopper radiometer for Nimbus 5, Proc. Roy. Soc. London, A334, 149-170, 1973. - Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, Zonal mean temperature, Pressure, zonal wind and geopotential height as functions of latitude, <u>Adv. Space. Res., 10</u>, 11-59, 1990. - Forbes, J. M. and D. F. Gillette, A compendium of theoretical atmospheric tidal structures, Part 1: Model description and explicit structures due to realistic thermal and gravitational excitation, Project 6690, <u>AFGL-TR-82-0173</u>, Air Force Geophys. Lab, Bedford, Mass., 1982. - Garcia, R. R. and R. T. Clancy, Seasonal variation in equatorial mesospheric temperatures observed by SME, J. Atmos. Sci., 47, 1666-1673, 1990. - Gille, S. T., A. Hauchecorne, and M. L. Chanin, Semidiurnal and diurnal tidal effects in the middle atmosphere as seen by Rayleigh lidar, <u>J. Geophys. Res.</u>, 96, 7579-7587, 1991. - Hauchecorne, A., M. L. Chanin, and R. Wilson, Mesospheric temperature inversion and gravity wave breaking, Geophys. Res. Lett., 14, 933-936, 1987. - Hedin, A. E., A revised thermospheric model based on mass spectrometer and incoherent scatter data, MSIS-83, <u>J. Geophys. Res.</u>, <u>88</u>, 10170-10185, 1983. - Lubken, F.- J. and U. von Zahn, Thermal structure of the mesopause region at polar latitudes, <u>J.</u> <u>Geophys. Res., 96</u>, 20841-20857, 1991. - Meriwether, J. W., P. D. Dao, R. T. McNutt, W. Klemetti, W. Moskowitz, and G. Davidson, Rayleigh lidar observations of mesosphere temperature structure, submitted to <u>J. Geophys.</u> Res., 1993. - Mount, G. H., D. W. Rusch, J. F. Noxon, J. M. Zawodny, and C. A. Barth, Measurements of stratospheric NO₂ from the Solar Mesosphere Explorer. 1. An overview of the results, <u>J. Geophys. Res.</u>, 89, 1327-1340, 1984. - Rusch, D. W., G. H. Mount, C. A. Barth, R. J. Thomas, and M. T. Callan, Solar Mesosphere Explorer ultraviolet spectrometer: Measurements of ozone in the 1.0- to 0.1-mbar region, <u>J. Geophys. Res., 89</u>, 11677-11687, 1984. - Schmidlin, F. J., Temperature inversions near 75 km, Geophys. Res. Lett., 3, 173-176, 1976. - Schmidlin, F. J., H. S. Lee, and W. Michel, The inflatable sphere: A technique for the accurate measurement of middle atmosphere temperatures, <u>J. Geophys. Res.</u>, 96, 22673-22682, 1991. - She, C. Y., J. R. Yu, and H. Chen, Observed thermal structure of a midlatitude mesopause, Geophys. Res. Lett., 20, 567-570, 1993. - Thomas, G. E., Solar Mesosphere Explorer measurements of polar mesospheric clouds (noctilucent clouds), J. Atmos. Terr. Phys., 46, 819-824, 1984. - Thomas, G. E., B. M. Jakosky, R. A. West, and R. W. Sanders, Satellite limb-scanning thermal infrared observations of the El Chichon stratospheric aerosol: First results, <u>Geophys. Res. Lett.</u>, 10, 10997-11000, 1983. na na kala ing talah ng italah patalah na matalah kalisa na sa ## Figure Captions Figure 1. SME limb radiance profiles observed at 296 nm, 304 nm,313 nm, and 442 nm. The exponential portions of the profiles indicate the exponential decrease of the Rayleigh scattering atmosphere with altitude. The lower altitude maxima in the profiles indicate ozone absorption at the 296-313 nm wavelengths, and molecular/aerosol extinction at 442 nm. Figure 2. Longitudinal coverages (at the equator) of the SME limb radiance profiles versus time over the 1982-1986 period. The 296 nm observations (G.P. 158) span the full period, whereas the 304/313 nm observations (G.P. 176, 195) began in 1983. The 442 nm observations were obtained at longitudes included in both panels. The latitudinal dependence of the zonal coverage is not large except at high latitudes, due to the near-polar, sun-synchronous orbit of SME. Figure 3. Profiles of SME (dashed lines and symbols) and CIRA 86 monthly averaged temperatures for the upper stratosphere and mesosphere at 40°S latitude for the months of (a) January, (b) April, (c) July and (d) October The SME temperatures are obtained from 296 nm (diamond symbols), 304 nm (plus symbols), 313 nm (asterisk symbols), and 442 nm (triangle symbols) radiance profile measurements between 1982 and 1986. The dashed lines indicate a spline-smoothed fit over the 40-92 km altitude region to these individual temperature profile measurements,
which were obtained for smaller altitude ranges. The CIRA 86 temperatures reflect 1973-1978 IR measurements below 80 km and the MSIS 83 model above 86 km. Figure 4. Same as for figure 3, for 15°S latitude. Figure 5. Same as for figure 3, for 0° latitude. Figure 6. Same as for figure 3, for 15°N latitude. Figure 7. Same as for figure 3, for 40°N latitude. Figure 8. Comparisons of SME (dashed lines) and CIRA 86 (solid lines) temperature climatologies to datasonde rocket measurements (asterisk symbols) in 1982. The datasonde profiles reflect the averages of 8-29 separate rocket measurements for Ascension Island in (a) January and (b) March; (c) Barking Sands, HI in March; Pt. Mugu, CA in (d) January and (e) March; and (f) Wallops Island, VA in March. The error bars presented with the rocket profiles indicate the 1 σ limits in the distribution of temperatures among the 8-29 observations reflected in the average rocket profiles. The average local time and number of rocket profiles for each average datasonde temperature profile are indicated for each comparison. Figure 9. Comparisons of SME (dashed lines) and Haute Provence lidar temperature profiles, for the months of (a) January (b) March (c) May (d) July (e) September and (f) November. The 44°N lidar profiles are separated as averages obtained from 1981-1984 (dotted lines, Chanin et al., 1985) and 1981-1987 (solid lines, Chanin et al., 1990). Figure 10. The January-to-June dependence of monthly average temperatures at 40°N for altitudes of (a) 85 km and (b) 90 km. The solid lines reflect linear fits to Urbana lidar nighttime observations in 1991 (Bills and Gardner, 1993); the plus symbols present the 2 pm SME climatology, and the asterisk symbols present the CIRA 86 climatological temperatures. Figure 11. Comparisons of high latitude temperatures from the SME (dashed lines) and CIRA 86 (solid lines) climatologies, and monthly averages from Andenes, Norway (Lubken and von Zahn, 1991). SME profiles for (a) 70°N in March (b) 65°N in August and (c) 70°N in October are available for comparison to the 69°N location of Andenes, Norway. The Norway profiles incorporate lidar and in situ measurements from 1980 to 1990. Figure 12. The annual dependences of temperatures at altitudes of 75 km (solid lines) and 85 km (dashed lines), from the SME (heavy lines) and CIRA 86 (light lines) climatologies. Figure 12 a presents these temperatures averaged over the latitude range 5°S-5°N. Figure 12b presents these temperatures averaged over the latitude range 30°S-40°S. Periods during which distinct temperature minima are observed at altitudes of 70-80 km for the SME climatology are indicated by arrows on each figure. 24 fiab ## APPENDIX A: SME TEMPERATURE CLIMATOLOGY ### **JANUARY** | ALT. | 75 | 70 | 65 | 6 0 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |------------|-----|-----|-----|------------|-------------|------------|---------------------|------------|------------|-----|--------|-----|-------------|-----|-----|-----| | 40 | 0 | 0 | 0 | 0 | 0 | 263 | 2 61 | 259 | 256 | 253 | 250 | 247 | 245 | 244 | 245 | 246 | | , 44 | 0 | 0 | 0 | 0 | 0 | 273 | 271 | 269 | 266 | 265 | 263 | 260 | 260 | 259 | 259 | 259 | | ່ 48 | 0 | 0 | 0 | 0 | 0 | 280 | 277 | 274 | 271 | 269 | 267 | 265 | 265 | 265 | 265 | 265 | | 52 | 0 | 0 | 0 | 0 | 0 | 276 | 273 | 270 | 267 | 265 | 264 | 264 | 266 | 267 | 268 | 268 | | 5 6 | 0 | 0 | 0 | 0 | 276 | 269 | 267 | 263 | 262 | 260 | 258 | 260 | 262 | 265 | 266 | 266 | | 6 0 | 0 | 0 | 0 | 0 | 266 | 262 | 257 | 255 | 251 | 248 | 247 | 250 | 253 | 255 | 257 | 257 | | 64 | 0 | 0 | 0 | 0 | 253 | 248 | 243 | 240 | 237 | 235 | 235 | 239 | 2 42 | 244 | 247 | 248 | | 6 8 | 0 | 0 | 0 | 0 | 238 | 231 | 228 | 224 | 224 | 225 | 226 | 229 | 230 | 231 | 234 | 236 | | 72 | 0 | 0 | 0 | 0 | 223 | 213 | 211 | 209 | 212 | 214 | 218 | 218 | 219 | 219 | 222 | 221 | | 76 | 0 | 0 | 0 | 0 | 197 | 197 | 198 | 202 | 205 | 208 | 213 | 212 | 213 | 213 | 214 | 212 | | 80 | 0 | 0 | 0 | 0 | 177 | 187 | 190 | 196 | 202 | 202 | 206 | 209 | 207 | 206 | 204 | 204 | | 84 | 0 | 0 | 0 | 0 | 173 | 178 | 185 | 190 | 198 | 198 | 202 | 203 | 201 | 199 | 198 | 197 | | 88 | 0 | 0 | 0 | 0 | 167 | 178 | 185 | 191 | 195 | 195 | 204 | 202 | 203 | 203 | 202 | 199 | | 92 | 0 | 0 | 0 | 0 | 177 | 183 | 186 | 192 | 190 | 198 | 196 | 203 | 199 | 205 | 202 | 203 | | | | | | | | | NO | RTH L | ATITU | /DE | | | | | | | | 4 T TT | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 6 0 | 65 | 70 | 75 | | ALT
40 | 246 | 245 | 247 | 248 | 248 | 246 | 246 | 245 | 244 | ^ | ^ | ^ | | | • | ^ | | 44 | 259 | 257 | 257 | 246
257 | 256 | 246
256 | 240
254 | 243
253 | 244
252 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 48 | 265 | 265 | 264 | 262 | 26 0 | 260 | 25 4 258 | 256 | 252
254 | 0 | 0
0 | 0 | 0
0 | 0 | 0 | 0 | | 52 | 268 | 268 | 267 | 263 | 260 | 258 | 255 | 252 | 250 | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | 56 | 266 | 265 | 264 | 261 | 258 | 256 | 254 | 253 | 250 | 249 | 248 | 247 | Ö | 0 | 0 | 0 | | 60 | 257 | 257 | 255 | 253 | 250 | 247 | 245 | 245 | 242 | 242 | 241 | 242 | Ö | Ö | 0 | Ö | | 64 | 248 | 249 | 246 | 245 | 242 | 238 | 236 | 233 | 231 | 230 | 232 | 237 | Ö | Ö | Ö | Ö | | 68 | 236 | 237 | 237 | 236 | 233 | 229 | 226 | 220 | 219 | 220 | 225 | 232 | Ŏ | ŏ | ŏ | Ö | | 72 | 221 | 223 | 224 | 224 | 221 | 219 | 217 | 212 | 213 | 215 | 221 | 225 | Ö | ŏ | ŏ | Ö | | 76 | 212 | 209 | 211 | 211 | 210 | 212 | 212 | 213 | 216 | 221 | 223 | 219 | ŏ | Ŏ | Ŏ | ŏ | | 80 | 204 | 198 | 200 | 201 | 204 | 206 | 207 | 219 | 220 | 227 | 226 | 219 | Ŏ | Ŏ | Ö | ŏ | | 84 | 197 | 193 | 194 | 198 | 203 | 207 | 208 | 222 | 221 | 225 | 227 | 221 | Ŏ | Ŏ | Ŏ | ŏ | | 88 | 199 | 197 | 195 | 201 | 202 | 210 | 212 | 219 | 224 | 224 | 229 | 225 | Ŏ | Ŏ | Ŏ | Ŏ | | 92 | 203 | 205 | 204 | 200 | 197 | 200 | 208 | 215 | 216 | 222 | 219 | 225 | Ŏ | Ŏ | ŏ | Ŏ | ### **FEBRUARY** | ALT. | 75 | 7 0 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |----------|------------|-------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 40 | 0 | 0 | 0 | 0 | 0 | 260 | 259 | 257 | 255 | 253 | 251 | 248 | 0 | 0 | 248 | 249 | | 44 | 0 | 0 | 0 | 0 | 0 | 269 | 269 | 267 | 265 | 264 | 263 | 262 | 0 | 0 | 263 | 263 | | 48
52 | 0 | 0 | 0 | 0 | 0 | 275
271 | 274 | 272 | 269 | 267 | 265 | 265 | 0 | 0 | 267 | 267 | | 56 | ŏ | 0 | 0
273 | 0
272 | 0
270 | 264 | 268
261 | 267
259 | 264
258 | 263
258 | 261
259 | 262
261 | 0
264 | 0
264 | 266
265 | 266
265 | | 60 | ŏ | ŏ | 265 | 262 | 259 | 257 | 253 | 250 | 248 | 248 | 251 | 254 | 256 | 257 | 263
258 | 265
257 | | 64 | Ŏ | Ŏ | 252 | 249 | 245 | 241 | 238 | 236 | 235 | 235 | 238 | 242 | 243 | 245 | 246 | 248 | | 68 | 0 | 0 | 235 | 234 | 229 | 225 | 224 | 223 | 223 | 225 | 227 | 228 | 229 | 231 | 233 | 235 | | 72 | 0 | 0 | 216 | 211 | 211 | 209 | 209 | 210 | 211 | 215 | 215 | 214 | 215 | 218 | 219 | 220 | | 76 | 0 | 0 | 199 | 191 | 195 | 196 | 198 | 202 | 204 | 208 | 208 | 206 | 208 | 208 | 207 | 207 | | 80
84 | 0
0 | 0 | 183 | 182 | 186 | 188 | 192 | 199 | 204 | 207 | 206 | 205 | 205 | 201 | 197 | 199 | | 88 | Ö | 0 | 170
170 | 176
181 | 183
189 | 188
195 | 194
20 0 | 199
201 | 205
206 | 208
205 | 204
206 | 204
205 | 201
205 | 199
208 | 192
204 | 194
204 | | 92 | Õ | Õ | 190 | 194 | 197 | 200 | 198 | 202 | 200 | 195 | 205 | 206 | 203 | 210 | 204 | 217 | | | | | | | | | NO | RTH L | ATITU | JDE | | | | | | | | ALT | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 5 5 | 60 | 65 | 70 | 75 | | 40 | 249 | 248 | 251 | 251 | 251 | 250 | 248 | 248 | 247 | 245 | 0 | 0 | 0 | 0 | 0 | 0 | | 44 | 263 | 2 61 | 260 | 260 | 259 | 259 | 258 | 257 | 256 | 254 | 0 | 0 | 0 | 0 | 0 | 0 | | 48 | 267 | 267 | 266 | 264 | 262 | 261 | 261 | 260 | 259 | 257 | 0 | 0 | 0 | 0 | 0 | 0 | | 52
56 | 266
265 | 267
263 | 266
262 | 263
260 | 261
258 | 258
256 | 258
255 | 256
253 | 254 | 253 | 0 | 0 | 0 | 0 | 0 | 0 | | 60 | 257 | 256 | 254 | 253 | 250
250 | 230
247 | 233
246 | 233
245 | 251
243 | 250
243 | 253
244 | 251
246 | 251
247 | 252
247 | 0 | 0 | | 64 | 248 | 248 | 246 | 244 | 241 | 238 | 236 | 234 | 232 | 232 | 233 | 236 | 239 | 240 | Ö | Ö | | 68 | 235 | 237 | 236 | 234 | 231 | 228 | 224 | 223 | 222 | 222 | 225 | 229 | 232 | 233 | ŏ | ŏ | | 72 | 220 | 221 | 221 | 221 | 219 | 216 | 214 | 216 | 216 | 217 | 220 | 224 | 229 | 226 | Ŏ | Ö | | 72 | | | | ~~~ | 200 | 208 | 210 | 215 | 216 | 217 | 219 | 219 | 224 | 224 | 0 | 0 | | 76 | 207 | 209 | 207 | 209 | 208 | | | | | | | | | | | | | 80 | 199 | 197 | 198 | 199 | 203 | 206 | 212 | 215 | 217 | 221 | 221 | 219 | 218 | 225 | 0 | 0 | | 80
84 | 199
194 | 197
191 | 198
196 | 199
197 | 203
203 | 206
207 | 212
211 | 215
215 | 217
216 | 221
223 | 221
223 | 219
222 | 218
219 | 225
225 | 0 | 0 | | 80 | 199 | 197 | 198 | 199 | 203 | 206 | 212 | 215 | 217 | 221 | 221 | 219 | 218 | 225 | 0 | 0 | ## MARCH | A 7 T | 75 | 7 0 | 65 | 6 0 | 5 5 | 5 0 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |-----------------|-----|------------|-----------|------------|------------|-------------|-----|------|------|------------|------------|-----|--------|------------|------------|------------| | ALT.
40 | 0 | 0 | 0 | 0 | 0 | 252 | 252 | 252 | 252 | 252 | 252 | 251 | 252 | 254 | 256 | 257 | | 44 | Ŏ | ŏ | Ö | ŏ | ŏ | 262 | 262 | 263 | 263 | 263 | 263 | 263 | 263 | 265 | 256
266 | 257
266 | | 48 | Ŏ | ŏ | ŏ | ŏ | Ö | 268 | 268 | 268 | 269 | 268 | 267 | 267 | 267 | 266 | 267 | 267 | | 52 | ŏ | ŏ | Ŏ | ŏ | Ŏ | 2 63 | 263 | 263 | 264 | 264 | 264 | 264 | 263 | 264 | 263 | 263
 | 56 | 261 | 261 | 261 | 262 | 261 | 257 | 256 | 256 | 257 | 257 | 259 | 260 | 261 | 262 | 262 | 261 | | 60 | 256 | 255 | 254 | 252 | 250 | 249 | 248 | 248 | 249 | 251 | 252 | 254 | 254 | 255 | 254 | 253 | | 64 | 246 | 244 | 242 | 239 | 236 | 235 | 234 | 235 | 237 | 239 | 241 | 242 | 243 | 244 | 244 | 244 | | 68 | 233 | 231 | 228 | 224 | 221 | 220 | 220 | 221 | 224 | 225 | 228 | 229 | 231 | 232 | 233 | 234 | | [*] 72 | 220 | 217 | 214 | 211 | 208 | 206 | 206 | 209 | 210 | 213 | 215 | 214 | 217 | 218 | 220 | 220 | | 76 | 210 | 206 | 204 | 201 | 201 | 201 | 202 | 204 | 204 | 204 | 205 | 205 | 207 | 207 | 206 | 205 | | 80 | 200 | 198 | 198 | 197 | 198 | 204 | 206 | 207 | 205 | 204 | 203 | 202 | 199 | 196 | 195 | 193 | | 84 | 191 | 194 | 197 | 200 | 204 | 208 | 210 | 212 | 211 | 209 | 203 | 201 | 197 | 193 | 192 | 192 | | 8 8 | 192 | 201 | 207 | 213 | 217 | 216 | 211 | 214 | 213 | 213 | 211 | 207 | 211 | 210 | 206 | 210 | | 92 | 205 | 206 | 213 | 214 | 214 | 213 | 208 | 203 | 206 | 210 | 217 | 218 | 222 | 223 | 229 | 231 | | | | | | | | | NO | RTHL | TITA | JDE | | | | | | | | AIT | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | | ALT.
40 | 257 | 258 | 256 | 255 | 253 | 251 | 249 | 249 | 248 | 246 | 245 | ^ | ^ | ^ | ^ | ^ | | 44 | 266 | 265 | 265 | 262 | 261 | 259 | 258 | 257 | 257 | 246
256 | 245
255 | 0 | 0
0 | 0
0 | 0 | 0 | | 48 | 267 | 267 | 267 | 265 | 262 | 262 | 261 | 260 | 260 | 260 | 259 | Ö | Ö | 0 | 0 | 0 | | 52 | 263 | 263 | 264 | 263 | 261 | 259 | 259 | 257 | 256 | 256 | 256 | Ö | Ö | 0 | 0 | 0 | | 56 | 261 | 261 | 260 | 260 | 259 | 257 | 257 | 256 | 255 | 255 | 255 | 255 | 254 | 255 | 257 | 254 | | 60 | 253 | 252 | 251 | 252 | 251 | 250 | 249 | 247 | 248 | 248 | 249 | 249 | 249 | 247 | 250 | 248 | | 64 | 244 | 244 | 243 | 243 | 240 | 238 | 237 | 236 | 236 | 237 | 238 | 240 | 240 | 238 | 239 | 239 | | 68 | 234 | 234 | 233 | 231 | 226 | 225 | 225 | 224 | 225 | 226 | 227 | 230 | 229 | 230 | 229 | 232 | | 72 | 220 | 219 | 219 | 216 | 214 | 215 | 215 | 215 | 216 | 218 | 219 | 219 | 221 | 222 | 221 | 223 | | 76 | 205 | 203 | 204 | 204 | 207 | 209 | 211 | 210 | 212 | 212 | 213 | 212 | 215 | 213 | 214 | 216 | | 80 | 193 | 192 | 193 | 199 | 203 | 207 | 211 | 212 | 211 | 212 | 212 | 212 | 214 | 210 | 211 | 215 | | 84 | 192 | 193 | 195 | 200 | 204 | 208 | 211 | 212 | 210 | 213 | 212 | 211 | 212 | 211 | 212 | 214 | | 88 | 210 | 208 | 210 | 210 | 213 | 212 | 213 | 211 | 208 | 208 | 213 | 212 | 215 | 214 | 217 | 215 | | 92 | 231 | 222 | 218 | 219 | 217 | 212 | 210 | 204 | 205 | 206 | 208 | 208 | 215 | 213 | 212 | 203 | APRIL ## SOUTH LATITUDE | ALT.
40
44
48
52
56
60
64
68
72
76
80
84
88
92 | 75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 70
0
0
0
0
0
0
0
0
0
0 | 65
0
0
0
0
0
0
0
0
0
0 | 60
0
0
0
253
247
238
233
228
223
220
217
221
216 | 55
0
0
0
0
255
246
235
228
224
221
216
213
218
219 | 50
242
252
258
257
253
246
235
226
222
219
217
214
216
218 | 244
254
260
258
253
246
220
215
210
210
216
219 | 246
256
262
259
255
247
236
226
217
207
208
216
221 | 248
258
264
261
256
249
238
226
215
202
209
218
216 | 250
260
266
262
258
250
239
227
214
203
198
207
221
219 | 25
251
261
266
263
258
251
239
226
213
203
198
204
220
218 | 20
253
262
266
263
259
252
240
226
214
204
197
202
215
213 | 254
264
267
263
259
252
240
227
213
203
197
198
213
223 | 255
262
265
263
260
252
240
229
215
202
193
199
216
218 | 5
256
262
265
262
260
252
241
229
215
201
192
197
215
222 | 0
254
266
267
263
260
252
242
230
213
197
191
200
220
223 | |--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---| | | 0 | 5 | 10 | 15 | 20 | 25 | NO) | RTH L
35 | ATITU
40 | DE
45 | 50 | 55 | 60 | 65 | 7 0 | 75 | | ALT.
40
44
48
52
56
60
64
68
72
76
80
84
88
92 | 254
266
267
263
260
252
242
230
213
197
191
200
220
223 | 256
265
267
262
260
251
241
230
213
197
190
199
217
221 | 256
264
266
262
260
252
241
228
211
196
192
199
214
220 | 256
262
264
262
259
252
241
227
210
198
196
204
219
214 | 254
261
264
261
259
252
239
226
212
199
197
204
218
218 | 253
261
263
261
260
251
239
226
213
202
199
206
216
210 | 252
261
265
262
259
252
240
226
212
203
199
204
215
210 | 252
262
265
262
261
252
240
227
214
204
198
201
211
206 | 252
262
266
264
261
253
241
228
215
204
200
200
202
202 | 252
263
267
264
262
255
243
229
215
205
203
199
197
201 | 252
264
268
265
263
254
243
230
217
206
202
198
195 | 0
0
0
0
262
254
244
232
219
208
203
198
199
195 | 0
0
0
0
261
255
245
232
218
207
202
196
195
193 | 0
0
0
0
261
255
245
234
221
209
201
196
193
191 | 0
0
0
0
261
255
246
235
222
211
202
197
196
186 | 0
0
0
0
260
255
246
236
221
209
202
198
195
184 | MAY | SO | HTT | LAT | ITUDE | |----|-----|-----|-------| | 20 | | | | | | | =0 | | | | | | | | | | | | | | | | |------|-----|-------------|-------------|-----|------------|------------|-----|-------|-------|-------------|-----|-----|-------------|-------------|-----|-----|--| | ALT. | 75 | 7 0 | 65 | 60 | 5 5 | 5 0 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | | | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 235 | 239 | 243 | 247 | 251 | 253 | 254 | 254 | 254 | 253 | | | 44 | Ŏ | ō | ŏ | ŏ | Ŏ | ŏ | 245 | 249 | 253 | 257 | 259 | 260 | 261 | 262 | 261 | 264 | | | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 251 | 255 | 259 | 263 | 264 | 265 | 266 | 266 | 263 | 266 | | | 52 | 0 | 0 | 0 | 0 | 0 | 0 | 253 | 254 | 257 | 260 | 261 | 262 | 262 | 263 | 261 | 263 | | | 56 | 0 | 0 | 0 | 0 | 0 | 249 | 250 | 252 | 253 | 255 | 256 | 257 | 258 | 258 | 259 | 260 | | | 60 | 0 | 0 | 0 | 0 | 0 | 240 | 246 | 244 | 245 | 247 | 248 | 249 | 249 | 249 | 250 | 252 | | | 64 | 0 | 0 | 0 | 0 | 0 | 240 | 240 | 235 | 235 | 235 | 235 | 236 | 236 | 237 | 238 | 239 | | | 68 | 0 | 0 | 0 | 0 | 0 | 240 | 233 | 228 | 225 | 224 | 223 | 223 | 224 | 224 | 225 | 224 | | | 72 | 0 | 0 | 0 | 0 | 0 | 228 | 224 | 221 | 213 | 212 | 210 | 211 | 211 | 209 | 210 | 209 | | | 76 | 0 | 0 | 0 | 0 | 0 | 218 | 213 | 213 | 205 | 201 | 200 | 201 | 203 | 202 | 202 | 202 | | | 80 | 0 | 0 | 0 | 0 | 0 | 215 | 211 | 210 | 206 | 200 | 199 | 198 | 199 | 201 | 200 | 201 | | | 84 | 0 | 0 | 0 | 0 | 0 | 219 | 218 | 214 | 212 | 209 | 206 | 202 | 200 | 200 | 198 | 198 | | | 88 | 0 | 0 | 0 | 0 | 0 | 227 | 227 | 221 | 219 | 219 | 211 | 205 | 2 03 | 2 03 | 202 | 200 | | | 92 | 0 | 0 | 0 | 0 | 0 | 218 | 226 | 225 | 224 | 219 | 214 | 208 | 207 | 205 | 210 | 208 | NO | RTH L | ATITU | ЉЕ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | | | ALT. | | | | | | | | | | | | | | | | | | | 40 | 253 | 254 | 255 | 255 | 254 | 254 | 254 | 255 | 257 | 258 | 259 | 0 | 0 | 0 | 0 | 0 | | | 44 | 264 | 263 | 2 63 | 263 | 262 | 261 | 263 | 264 | 266 | 267 | 268 | 0 | 0 | 0 | 0 | 0 | | | 48 | 266 | 265 | 264 | 263 | 263 | 264 | 266 | 267 | 269 | 270 | 272 | 0 | 0 | 0 | 0 | 0 | | | 52 | 263 | 262 | 262 | 262 | 261 | 262 | 264 | 265 | 266 | 26 8 | 269 | 0 | 0 | 0 | 0 | 0 | | | 56 | 260 | 2 60
| 260 | 260 | 260 | 261 | 262 | 263 | 264 | 265 | 267 | 269 | 271 | 272 | 273 | 274 | | 52 JUNE | ALT. | 75 | 7 0 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | 40
44
48 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 233
246
253 | 238
250
257 | 244
256
261 | 248
259
264 | 251
260
264 | 252
260
264 | 252
259
263 | 251
259
263 | 250
259
261 | 250
259
260 | | 52
56 | 0
0 | 0 | 0
0 | 0 | 0 | 0 | 256
248 | 257
252 | 260
255 | 261
255 | 261
256 | 261 | 261 | 261 | 260 | 259 | | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 245 | 245 | 247 | 246 | 246 | 256
247 | 257
248 | 257
249 | 258
249 | 258
250 | | 64
68 | 0 | 0 | 0 | 0 | 0 | 0 | 242
236 | 236
224 | 234
219 | 233
218 | 233
219 | 233
221 | 235
223 | 236
225 | 236
225 | 237
224 | | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 231 | 214 | 207 | 206 | 207 | 211 | 212 | 213 | 213 | 212 | | 76
80 | 0
0 | 0 | 0 | 0 | 0
0 | 0
0 | 223
211 | 211
215 | 203
209 | 199
202 | 200
200 | 202
196 | 204
198 | 206
201 | 207
202 | 207
201 | | 84 | 0 | 0 | 0 | 0 | 0 | 0 | 212 | 218 | 219 | 215 | 207 | 199 | 195 | 194 | 195 | 194 | | 88
92 | 0 | 0
0 | 0
0 | 0
0 | 0 | 0 | 228
229 | 225
237 | 229
230 | 226
222 | 214
214 | 209
206 | 197
201 | 192
198 | 196
194 | 194
200 | NO | RTH L | ATITU | DE | | | | | | | | | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 6 0 | 65 | 70 | 75 | | ALT.
40 | 250 | 252 | 250 | 250 | 251 | 252 | 254 | 255 | 256 | 258 | 259 | 0 | 0 | 0 | 0 | 0 | | 44 | 259 | 260 | 259 | 259 | 259 | 260 | 261 | 263 | 264 | 267 | 268 | Ö | Ö | 0 | Ŏ | Ö | | 48
52 | 260
259 | 261
259 | 262
260 | 262
260 | 263 | 265 | 265 | 266 | 268 | 270 | 272 | 0 | 0 | 0 | 0 | 0 | | 56 | 259
258 | 259 | 259 | 259 | 261
258 | 262
259 | 263
261 | 264
263 | 266
265 | 268
267 | 271
269 | 0
274 | 0 | 0 | 0 | 0 | | 60 | 250 | 251 | 251 | 251 | 250 | 250 | 251 | 254 | 256 | 259 | 261 | 265 | Ŏ | ŏ | ŏ | Õ | | 64
68 | 237
224 | 238
224 | 237 | 236 | 235 | 235 | 236 | 239 | 241 | 245 | 248 | 252 | 0 | 0 | 0 | 0 | | 72 | 212 | 210 | 222
209 | 222
209 | 221
209 | 221
209 | 221
208 | 223
208 | 225
207 | 228
209 | 232
212 | 235
215 | 0 | 0 | 0 | 0 | | 76 | 207 | 205 | 204 | 204 | 205 | 203 | 202 | 196 | 194 | 193 | 194 | 196 | Ŏ | Ö | Õ | Ö | | 80 | 201 | 201 | 201 | 203 | 202 | 197 | 197 | 189 | 186 | 182 | 177 | 178 | 0 | 0 | 0 | 0 | | 84
88 | 194
194 | 194
194 | 197
198 | 198
198 | 197
197 | 194
203 | 192
199 | 186
194 | 181
182 | 174
177 | 166
171 | 161
160 | 0 | 0 | 0 | 0
0 | | 92 | 200 | 202 | 197 | 198 | 200 | 200 | 198 | 195 | 190 | 188 | 182 | 182 | 0 | Ö | 0 | 0 | | | | | | | | | | | | | | | | | | | JULY ### SOUTH LATITUDE | 75 | 7 0 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |---|--|--|---|--|--|--|--|---|---|--|--|--|--|---|---| | 0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0 | 244
254
258
258
254
247
234
222
216
214
218
226
230
232 | 246
256
259
257
253
245
229
215
208
207
213
222
230
232 | 249
258
261
258
254
245
229
215
205
203
208
219
226
228 | 250
258
262
259
255
246
231
216
204
200
205
213
218
219 | 251
259
262
260
255
246
233
220
208
202
201
206
212
213 | 250
258
262
260
256
248
235
224
211
203
199
201
207
208 | 249
258
263
261
256
247
236
226
216
207
197
193
198
207 | 248
258
263
261
257
249
237
227
218
209
198
192
193
201 | 247
257
263
262
258
250
239
228
217
208
198
193
193
198 | 244
257
262
262
259
250
239
228
216
207
200
193
192
198 | | | | | | | | NO: | RTH L | ATITU | ЛDE | | | | | | | | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 5 0 | 55 | 6 0 | 65 | 70 | 75 | | 244
257
262
259
250
239
228
216
207
200
193
192
198 | 245
258
263
262
260
251
239
227
215
207
201
195
194
199 | 247
259
263
261
260
252
238
225
212
205
202
198
195
195 | 248
258
261
260
251
237
224
211
205
202
198
200
197 |
250
258
262
261
257
249
237
224
212
205
201
197
200
201 | 251
259
263
261
256
249
235
223
212
206
197
194
201
199 | 252
260
264
261
256
246
233
223
211
202
191
191
202
198 | 253
261
265
262
258
249
234
221
208
201
193
188
195
195 | 255
263
266
264
261
251
236
221
206
198
190
185
193
194 | 256
264
268
266
263
255
241
223
205
191
184
180
185
191 | 258
266
270
268
267
257
243
226
206
190
180
173
177
185 | 0
0
0
271
261
246
229
209
191
176
164
167
184 | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 244
0 0 0 0 0 0 0 0 254
0 0 0 0 0 0 0 0 258
0 0 0 0 0 0 0 0 258
0 0 0 0 0 0 0 0 254
0 0 0 0 0 0 0 0 254
0 0 0 0 0 0 0 0 247
0 0 0 0 0 0 0 0 222
0 0 0 0 0 0 0 0 222
0 0 0 0 0 0 0 0 216
0 0 0 0 0 0 0 216
0 0 0 0 0 0 0 216
0 0 0 0 0 0 0 218
0 0 0 0 0 0 0 226
0 0 0 0 0 0 0 226
0 0 0 0 0 0 0 230
0 0 0 0 0 0 232
NOTE: NOTE: NOTE: NOTE: NOTE: NOTE: 244 245 247 248 250 251 252 257 258 259 258 258 259 260 262 263 263 261 262 263 264 262 262 261 261 261 261 261 261 259 260 260 260 260 257 256 256 250 251 252 251 249 249 246 239 239 238 237 237 235 233 228 227 225 224 224 223 223 216 215 212 211 212 212 211 207 207 205 205 205 206 202 200 201 202 202 201 197 191 193 195 198 198 197 194 191 192 194 195 200 200 201 202 | 0 0 0 0 0 0 0 0 244 246 0 0 0 0 0 0 0 0 254 256 0 0 0 0 0 0 0 0 258 259 0 0 0 0 0 0 0 0 258 257 0 0 0 0 0 0 0 0 254 253 0 0 0 0 0 0 0 0 254 253 0 0 0 0 0 0 0 0 247 245 0 0 0 0 0 0 0 0 247 245 0 0 0 0 0 0 0 0 247 245 0 0 0 0 0 0 0 0 222 215 0 0 0 0 0 0 0 0 222 215 0 0 0 0 0 0 0 0 216 208 0 0 0 0 0 0 0 216 208 0 0 0 0 0 0 0 218 213 0 0 0 0 0 0 0 226 222 0 0 0 0 0 0 0 0 226 222 0 0 0 0 0 0 0 0 230 230 0 0 0 0 0 0 0 232 232 NORTH L 0 5 10 15 20 25 30 35 244 245 247 248 250 251 252 253 257 258 259 258 258 259 260 261 262 263 263 261 262 263 264 265 262 262 261 261 261 261 261 261 262 259 260 260 260 257 256 256 258 250 251 252 251 249 249 246 249 239 239 238 237 237 235 233 234 228 227 225 224 224 223 223 221 216 215 212 211 212 212 211 208 207 207 205 205 205 206 202 201 200 201 202 202 201 197 191 193 193 195 198 198 197 194 191 188 | 0 0 0 0 0 0 0 0 244 246 249 0 0 0 0 0 0 0 0 254 256 258 0 0 0 0 0 0 0 0 0 258 259 261 0 0 0 0 0 0 0 0 258 257 258 0 0 0 0 0 0 0 0 0 0 254 253 254 0 0 0 0 0 0 0 0 0 0 247 245 245 0 0 0 0 0 0 0 0 0 0 0 247 245 245 0 0 0 0 0 0 0 0 0 0 0 234 229 229 0 0 0 0 0 0 0 0 0 0 222 215 215 0 0 0 0 0 0 0 0 0 0 222 215 215 0 0 0 0 0 0 0 0 0 0 214 207 203 0 0 0 0 0 0 0 0 214 207 203 0 0 0 0 0 0 0 0 0 218 213 208 0 0 0 0 0 0 0 0 0 232 232 232 228 0 0 0 0 0 0 0 0 0 0 0 232 232 232 228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 244 246 249 250 0 0 0 0 0 0 254 256 258 258 0 0 0 0 0 0 0 0 258 259 261 262 0 0 0 0 0 0 0 0 258 257 258 259 0 0 0 0 0 0 0 0 0 254 253 254 255 0 0 0 0 0 0 0 0 0 254 253 254 255 0 0 0 0 0 0 0 0 0 254 253 254 255 0 0 0 0 0 0 0 0 0 247 245 245 246 0 0 0 0 0 0 0 0 247 245 245 246 0 0 0 0 0 0 0 0 222 215 215 | 0 | 0 | 0 | 0 0 0 0 0 0 0 0 244 246 249 250 251 250 249 248 0 0 0 0 0 0 0 0 254 256 258 258 258 258 258 0 0 0 0 0 0 0 0 0 258 257 258 259 260 260 261 261 0 0 0 0 0 0 0 0 0 254 253 254 255 255 256 256 257 0 0 0 0 0 0 0 0 247 245 245 246 246 248 247 249 0 0 0 0 0 0 0 0 234 229 229 231 233 235 236 237 0 0 0 0 0 0 0 0 234 229 229 231 233 235 236 237 0 0 0 0 0 0 0 0 0 222 215 215 216 220 224 226 227 0 0 0 0 0 0 0 0 0 216 208 205 204 208 211 216 218 0 0 0 0 0 0 0 0 218 213 208 205 201 199 197 198 0 0 0 0 0 0 0 0 226 222 219 213 206 201 199 197 198 0 0 0 0 0 0 0 0 0 226 222 219 213 206 201 193 192 0 0 0 0 0 0 0 0 230 230 226 218 212 207 198 193 0 0 0 0 0 0 0 0 0 232 232 232 228 219 213 208 207 201 NORTH LATITUDE NORTH LATITUDE NORTH LATITUDE NORTH LATITUDE NORTH LATITUDE NORTH LATITUDE 0 5 10 15 20 25 30 35 40 45 50 55 60 65 | 0 0 0 0 0 0 0 0 254 246 249 250 251 250 249 248 247 0 0 0 0 0 0 0 0 0 258 259 261 262 262 262 263 263 263 263 0 0 0 0 0 0 0 0 0 0 258 259 261 262 262 262 263 263 263 0 0 0 0 0 0 0 0 0 0 258 259 261 262 262 262 263 263 263 0 0 0 0 0 0 0 0 0 0 254 255 255 255 255 255 255 255 257 258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | # **AUGUST** | ALT. | 75 | 7 0 | 65 | 60 | 5 5 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |--|--|--|---|---|--|--|---|--|--|--|--|--|--|--|--|--| | 40
44
48
52
56
60
64
68
72
76
80
84
88
92 | 0 | 0 | 000000000000000000000000000000000000000 | 0 | 0
0
0
258
253
243
225
218
213
216
224
225 | 246
255
259
257
254
247
237
228
220
214
213
221
227
227 | 247
256
259
255
251
243
221
213
212
218
225
228
226 | 249
257
260
255
250
241
228
216
207
208
219
226
227
228 | 251
259
261
257
252
244
229
217
207
204
212
220
222
225 | 252
260
262
258
254
246
232
218
206
203
208
215
220
222 | 251
260
263
259
256
248
235
222
209
202
204
211
217
219 | 250
259
263
260
256
249
237
225
212
204
201
203
212
220 | 249
259
264
262
257
249
238
227
216
205
197
198
206
216 | 248
259
265
263
258
250
240
230
215
204
198
195
202
217 | 247
261
267
264
259
252
242
230
216
206
197
190
200
218 | 245
262
267
263
259
252
240
229
216
206
196
193
201
217 | | | | | | | | | NO | RTH L | ATITU | IDE | | | | | | | | ALT. | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | | 40
44
48
52
56
60
64
68
72
76
80
84
88
92 | 245
262
267
263
259
252
240
229
216
206
196
193
201
217 | 245
262
266
263
260
253
241
228
215
205
198
194
203
219 | 247
261
265
262
261
254
241
226
212
203
200
197
203 | 248
258
262
261
261
253
240
226
213
205
201
200
209 | 248
257
260
259
252
240
225
210
202
202
203
207 | 248
256
259
259
257
251
240
227
212
202
198
202
209 | 249
256
260
259
256
250
237
224
214
207
203
201
208 | 250
258
260
259
255
248
234
223
212
204
199
199 | 251
259
262
260
257
248
235
221
210
201
196
196 | 252
260
263
261
259
250
237
222
208
197
190
189 | 253
261
265
263
262
252
238
222
205
193
187
187 | 0
0
0
0
267
256
241
224
207
191
181
180 | 0
0
0
270
260
245
228
208
189
179
174 | 0
0
0
0
272
263
249
233
215
197
181
166 | 0 | 0 | | 74 | 211 | 219 | 214 | 211 | 210 | 204 | 2 03 | 202 | 203 | 202 | 200 | 1 9 9 | 198 | 193 | 0 | 0 | ### **SEPTEMBER** | ALT. | 75 | 7 0 | 65 | 60 | 55 | 5 0 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------
-------------------|-------------------|-------------------|-------------------| | 40
44 | 0 | 0 | 0 | 0 | 0 | 253 | 252 | 251 | 252 | 253 | 252 | 253 | 253 | 252 | 254 | 0 | | 44
48 | 0 | 0 | 0 | 0 | 0 | 262
265 | 260
263 | 260
263 | 261
263 | 262
264 | 261 | 261 | 262 | 263 | 261 | 0 | | 52 | ŏ | Õ | 0 | 0 | Ö | 261 | 259 | 258 | 259 | 259 | 264
260 | 264
261 | 265
262 | 266
263 | 264
263 | 0 | | 56 | Ŏ | 266 | 261 | 259 | 257 | 254 | 252 | 253 | 255 | 256 | 256 | 257 | 257 | 257 | 259 | 258 | | 60 | 0 | 257 | 254 | 252 | 249 | 246 | 245 | 245 | 247 | 249 | 249 | 250 | 250 | 249 | 250 | 251 | | 64 | 0 | 246 | 244 | 242 | 238 | 235 | 233 | 232 | 232 | 234 | 235 | 238 | 240 | 240 | 240 | 241 | | 68 | 0 | 237 | 235 | 231 | 229 | 226 | 223 | 220 | 219 | 219 | 221 | 225 | 229 | 230 | 230 | 2 30 | | .72
76 | 0 | 227
218 | 225
218 | 222
217 | 221
216 | 219
217 | 217
215 | 213
214 | 212
212 | 209 | 210 | 212 | 215 | 216 | 216 | 215 | | 80 | Ŏ | 216 | 214 | 214 | 216 | 217 | 213 | 213 | 212 | 208
208 | 206
208 | 205
203 | 204
198 | 203
193 | 201
192 | 199
191 | | 84 | Ŏ | 220 | 214 | 216 | 217 | 215 | 214 | 215 | 212 | 210 | 208 | 205 | 199 | 194 | 196 | 191 | | 88 | 0 | 220 | 220 | 225 | 219 | 218 | 218 | 220 | 218 | 218 | 215 | 215 | 212 | 211 | 210 | 209 | | 92 | 0 | 213 | 219 | 222 | 219 | 219 | 216 | 217 | 218 | 217 | 220 | 219 | 220 | 225 | 228 | 234 | | | | | | | | | NO | RTH L | ATITU | DE | | | | | | | | ALT. | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 6 0 | 65 | 70 | 75 | | 40 | 0 | 0 | 0 | 248 | 248 | 246 | 247 | 247 | 248 | 249 | 250 | 0 | 0 | 0 | 0 | 0 | | 44 | Ö | Ŏ | Ö | 265 | 262 | 259 | 259 | 258 | 258 | 259 | 259 | ŏ | Ŏ | ŏ | Ö | Ö | | 48 | 0 | 0 | 0 | 267 | 264 | 262 | 262 | 262 | 262 | 262 | 263 | Ō | Ŏ | ŏ | Ŏ | Ö | | 52 | 0 | 0 | 0 | 261 | 260 | 259 | 258 | 258 | 258 | 259 | 259 | 0 | 0 | 0 | 0 | 0 | | 5 6
6 0 | 258
251 | 260
252 | 260
252 | 258
253 | 257 | 257
251 | 256 | 255 | 255 | 255 | 256 | 257 | 257 | 261 | 260 | 260 | | 64 | 241 | 241 | 232
241 | 233
241 | 251
239 | 238 | 249
238 | 248
236 | 246
234 | 245
233 | 247
233 | 249
236 | 248
236 | 252
238 | 253
242 | 256
245 | | 68 | | 227 | 227 | 227 | 226 | 224 | 224 | 223 | 223 | 221 | 219 | 221 | 222 | 236
224 | 242
227 | 243
229 | | | 230 | 221 | | | | | | | | | | | | | | | | 72 | 230
215 | 214 | 213 | 214 | 213 | 211 | 211 | 209 | 210 | 209 | 207 | 206 | 208 | 210 | 210 | 213 | | 76 | 215
199 | 214
204 | 213
203 | 214
204 | 203 | 200 | 202 | 20 3 | 203 | 201 | 200 | 196 | 198 | 198 | 198 | 213
200 | | 76
80 | 215
199
191 | 214
204
196 | 213
203
197 | 214
204
197 | 203
197 | 200
199 | 202
201 | 203
204 | 203
205 | 201
203 | 200
202 | 196
196 | 198
194 | 198
193 | 198
194 | 200
191 | | 76
80
84 | 215
199
191
194 | 214
204
196
197 | 213
203
197
197 | 214
204
197
198 | 203
197
199 | 200
199
206 | 202
201
207 | 203
204
208 | 203
205
207 | 201
203
206 | 200
202
207 | 196
196
204 | 198
194
197 | 198
193
196 | 198
194
194 | 200
191
188 | | 76
80 | 215
199
191 | 214
204
196 | 213
203
197 | 214
204
197 | 203
197 | 200
199 | 202
201 | 203
204 | 203
205 | 201
203 | 200
202 | 196
196 | 198
194 | 198
193 | 198
194 | 200
191 | ### **OCTOBER** | AT T | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |--|--|--|---|--|---|--|--|--|--|--|--|--|--|--|--|--| | ALT.
40
44
48
52
56
60
64
68
72
76
80
84
88
92 | 0
0
0
0
272
266
254
240
225
213
204
197
197 | 0
0
0
269
263
253
240
226
212
204
199
198
193 | 0
0
0
268
261
250
239
226
212
203
200
199
194 | 0
0
0
0
265
260
249
236
223
213
205
199
201
200 | 0
0
0
264
258
247
233
220
211
206
201
203
202 | 253
264
271
268
261
255
243
232
220
210
205
202
203
202 | 254
265
271
267
259
254
243
230
218
209
204
202
205
204 | 255
266
270
265
258
253
242
229
217
208
203
204
212
210 | 255
266
269
264
258
251
239
226
215
203
199
206
215
213 | 256
265
267
262
258
251
239
226
212
201
200
209
220
217 | 255
265
265
260
257
250
238
225
211
199
198
208
221
221 | 253
264
265
259
255
250
238
224
209
199
200
210
217
217 | 258
264
263
259
256
249
238
225
210
198
200
209
215
225 | 259
266
264
261
257
248
238
225
209
198
200
207
214
225 | 259
267
266
262
258
249
239
226
208
195
196
209
220
226 | 0
0
0
0
257
249
238
225
209
196
197
209
222
229 | | | | | | | | | NO | RTH L. | ATITU | DE | | | | | | | | ALT. | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | | 40
44
48
52
56
60
64
68
72
76
80
84
88
92 | 0
0
0
0
257
249
238
225
209
196
197
209
222
229 | 0
0
0
0
256
248
237
225
210
198
198
207
216
227 | 0
0
0
255
247
236
224
209
200
200
204
216
230 | 0
0
0
0
257
248
236
223
209
200
200
205
220
227 | 0
0
0
257
248
236
222
207
199
201
207
215
224 | 0
0
0
0
255
247
237
223
209
199
200
209
216
226 | 246
261
262
257
254
247
237
224
210
200
200
208
218
223 | 243
258
262
257
253
244
235
225
211
201
201
210
219
221 | 242
256
261
256
252
244
234
224
212
204
203
209
218
222 | 242
254
259
255
252
243
234
224
214
207
207
209
212
218 | 240
252
257
255
250
242
235
227
219
206
201
212
214
226 | 0
0
0
0
251
246
239
231
222
213
203
206
218
223 | 0
0
0
0
251
248
239
229
226
219
205
209
217
212 | 0
0
0
249
250
244
236
227
217
210
209
213
217 | 0
0
0
0
251
251
247
240
229
221
218
215
216
202 | 0
0
0
0
0
0
0
0
0 | ### NOVEMBER | ALT. | 75 | 7 0 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |--|---|---|---|---|---|---|---|---|---|---|---|--|--|--|--|---------------------------------| | 40
44
48
52
56 | 0
0
0
0
278 | 0
0
0
0
277 | 0
0
0
0
274 | 0
0
0
0
271 | 0
0
0
0
271 | 262
272
276
272
266 | 262
272
275
270
265 | 260
272
274
268
264 | 259
270
271
265
261 | 257
268
269
265
260 | 255
266
267
261
259 | 256
264
263
260
258 | 254
265
264
260
258 | 257
266
264
260
258 |
257
265
263
260
258 | 255
265
265
261
257 | | 60
,64
68
72
76
80 | 270
259
244
227
211
195 | 268
256
244
227
208
193 | 265
254
241
225
208
192 | 263
252
238
221
205
192 | 262
249
235
218
203
192 | 260
247
232
216
200
190 | 258
246
231
214
199
191 | 256
243
228
211
197
192 | 254
242
226
208
196
194 | 252
238
224
210
201
199 | 251
238
224
208
200
203 | 250
238
226
213
196
194 | 250
238
224
209
199
201 | 248
237
224
209
200
203 | 249
238
223
209
203
204 | 247
237
224
210
204 | | 84
88
92 | 178
167
164 | 178
168
166 | 177
170
173 | 181
176
177 | 184
184
188 | 186
190
196 | 194
200
194 | 194
202
207 | 200
209
212 | 204
213
211 | 211
217
212 | 214
218
215 | 213
221
215 | 203
212
217
217 | 210
216
217 | 202
203
212
225 | | | | | | | | | NO | RTH L | ATITU | IDE | | | | | | | | ALT. | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | | 40
44
48
52
56
60
64
68
72
76 | 255
265
265
261
257
247
237
224
210 | 254
264
264
261
258
247
235
224
212 | 253
263
263
260
258
247
235
223
211 | 0
0
0
0
257
246
234
223
211 | 247
260
263
258
256
247
235
222
210 | 245
257
261
256
255
247
235
223
212 | 243
254
258
255
253
246
238
227
213 | 241
251
256
254
253
247
238
229
217 | 238
248
253
253
253
249
240
231
218 | 0
0
0
0
252
245
239
233
223 | 0
0
0
0
253
247
239
231
224 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0
0 | ## **DECEMBER** | ALT. | 75 | 7 0 | 65 | 6 0 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | |------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-----|-----|-----|-------------|------------| | AL 1. | 0 | 0 | 0 | 0 | 0 | 264 | 263 | 261 | 258 | 255 | 252 | 250 | 249 | 248 | 247 | 246 | | 44 | ŏ | ŏ | ŏ | ŏ | Ŏ | 272 | 272 | 270 | 268 | 265 | 2 63 | 261 | 260 | 259 | 256 | 254
254 | | 48 | Ŏ | ŏ | ŏ | Ŏ | ŏ | 277 | 275 | 272 | 270 | 267 | 2 65 | 263 | 262 | 261 | 2 61 | 260 | | 52 | Ö | ŏ | ŏ | Ö | ŏ | 274 | 272 | 269 | 266 | 2 63 | 261 | 261 | 260 | 262 | 261 | 261 | | 56 | Ŏ | ŏ | Ŏ | ŏ | 276 | 271 | 269 | 266 | 264 | 261 | 259 | 258 | 259 | 261 | 261 | 261 | | 6 0 | Ŏ | ŏ | Ŏ | ŏ | 266 | 263 | 261 | 257 | 255 | 251 | 251 | 249 | 250 | 253 | 252 | 253 | | 64 | ŏ | ŏ | ŏ | ŏ | 253 | 249 | 246 | 243 | 240 | 237 | 236 | 238 | 239 | 242 | 243 | 243 | | 68 | Ŏ | Ŏ | ŏ | Ŏ | 237 | 233 | 229 | 227 | 224 | 223 | 222 | 226 | 226 | 228 | 230 | 231 | | `72 | Ō | Ŏ | Ŏ | Ŏ | 217 | 214 | 212 | 209 | 209 | 211 | 212 | 214 | 214 | 214 | 216 | 216 | | 76 | 0 | Ō | 0 | 0 | 200 | 196 | 196 | 198 | 199 | 202 | 207 | 208 | 209 | 207 | 208 | 206 | | 80 | 0 | 0 | 0 | 0 | 185 | 184 | 185 | 195 | 196 | 199 | 205 | 209 | 209 | 207 | 205 | 202 | | 84 | 0 | 0 | 0 | 0 | 172 | 178 | 184 | 193 | 195 | 201 | 203 | 208 | 208 | 208 | 204 | 200 | | 88 | 0 | 0 | 0 | 0 | 167 | 179 | 188 | 191 | 195 | 203 | 207 | 205 | 204 | 208 | 208 | 200 | | 92 | 0 | 0 | 0 | 0 | 176 | 180 | 185 | 189 | 199 | 201 | 204 | 200 | 204 | 203 | 207 | 204 | | | | | | | | | NO | RTH L | ATITU | DE | | | | | | | | | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | | ALT. | 246 | 046 | 0.45 | 045 | 046 | 246 | | | | • | | • | | | _ | _ | | 40 | 246 | 246 | 247 | 245 | 246 | 246 | 244 | 240 | 237 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | . 44
48 | 254
260 | 254
259 | 254 | 256
260 | 255 | 255 | 253 | 249 | 245 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - 5 2 | 261 | 259
261 | 259
261 | 260 | 259
258 | 259
258 | 258
256 | 255
253 | 249
248 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 56 | 261 | 260 | 260 | 258 | 258 | 256
256 | 255
255 | 253
253 | 250 | 249 | 251 | 0 | 0 | 0 | 0 | 0 | | 6 0 | 253 | 251 | 250 | 249 | 247 | 230
247 | 245 | 233
244 | 243 | 243 | 246 | 0 | 0 | 0 | 0 | Ö | | 64 | 243 | 242 | 241 | 239 | 236 | 235 | 232 | 232 | 232 | 233 | 238 | Ö | Ö | Ŏ | Ö | Ö | | 68 | 231 | 232 | 232 | 231 | 228 | 224 | 221 | 220 | 222 | 224 | 230 | Ö | Ö | ŏ | ŏ | ŏ | | 72 | 216 | 218 | 221 | 220 | 219 | 215 | 213 | 212 | 217 | 219 | 224 | Ö | Ö | Ö | ŏ | Ö | | 76 | 206 | 207 | 209 | 211 | 211 | 208 | 208 | 210 | 214 | 218 | 221 | Ŏ | Ö | Ŏ | Ŏ | Ö | | 80 | 202 | 200 | 201 | 201 | 203 | 204 | 211 | 214 | 209 | 219 | 223 | Ŏ | Ŏ | Ŏ | Ö | Ö | | 84 | 200 | 197 | 199 | 199 | 202 | 208 | 213 | 219 | 215 | 221 | 225 | Ŏ | ŏ | ŏ | ŏ | ŏ | | 8 8 | 200 | 198 | 200 | 204 | 203 | 212 | 214 | 223 | 229 | 233 | 228 | Ŏ | Ŏ | ŏ | ŏ | ŏ | | 92 | 204 | 205 | 203 | 202 | 202 | 207 | 218 | 224 | 236 | 235 | 227 | Ŏ | ŏ | Ŏ | Ŏ | Ŏ | | | | - | - | |
 | |--|--|---|---|--|------| | | | | | | , | | | | | | | • |